

Designing Cloud-grade

Mario Baldi

Fellow, Pensando Systems, Inc.

© 2021 Cloud@Micro

The Cloud and the Data Processing Unit (DPU)

- Infrastructure services in addition to computing services
 - Networking (SDN)
 - Security (firewalling, IPsec tunnel termination)
 - Storage (NVMe-oF)
 - Observability (telemetry, packet capture)
- Traditionally executed on the CPU
 - Using valuable resources
- Offloading is appealing
 - Custom hardware
 - Data Processing Units (DPU)

New Use Cases and Opportunities

- Bare Metal as a Service (BMaaS)
- PCIe IO Emulation
 - Network devices (e.g., VirtIO)
 - Storage devices (e.g., NVMe)
- Tenant routing protocol offload (e.g., BGP)

Cloud DPU Requirements

- Security
 - Secure execution environment
 - Protected from the network
 - Protected from the host
- Independence (from the host)
 - Operation and management
 - Control
 - Operation in bare metal scenarios

Cloud DPU Requirements

- Performance
- Scale
- Compute virtualization support
 - E.g., SRIOV
- Multi-tenancy with per-tenant service isolation
 - Traffic from one tenant cannot affect service to others
 - Network side and host side
- Network virtualization
- Flexibility capability to evolve and adapt

Design Implications and Options

Programmability

Flexibility - Evolve and adapt

- General purpose processor(s)
- Application specific processors
 - Pipelined processing
- Combination
 - Also specialized hardware

Built-in Security

Execution

- Root-of-trust
- Secure boot
- Trusted software execution
- Secure key store

Isolation

- Controlled communication with the host
- Driven by DPU
- Limited agency by host

Sophisticated Memory Architecture

Scalability and Performance

(possibly a trade-off)

- Fast local memory \rightarrow performance
 - E.g., SRAM at each pipeline stage
 - \circ Small size → scalability
 - ∘ Low efficiency \rightarrow scalability
- Large centralized memory \rightarrow scalability

Access latency → performance Multi-stage Memory Hierarchy

ΡΕΝSΛΝD

Central Memory with Local Cache Mask access latency and limit contention ↓
possibly best of breed
In traditional, general purpose computing

Spatial locality

Z

Temporal locality

In pipelined packet processing, also Functional locality

Limited amount of data Small number of instructions

ΡΕΝSAND

Input Differentiation and Scheduling

Virtualization and multi-tenancy

PCle

- Multiple logical interfaces
- Complex scheduling

Ethernet

- Traffic classification
- Differentiated queuing
- Traffic policing
- Operation at line rate
 - Bit rate
 - Packet rate

The Pensando Solution

Pensando Distributed Services Platform

Programmable SoC

Requirement Mapping

Experimental Setup

- Production P4 code for cloud data center
 - Two different P4 programs
- Various configuration and traffic scenarios
- L1 data cache hits and misses per stage
- Instruction cache hits and misses per MPU

ΡΕΝSΛΝDO

1,000 active flows

1,800,000 active flows

Concluding Remarks

- Data Processing Units (DPUs) can play a key role in the cloud
 - Free up valuable resources by offloading services
 - Open up new opportunities
- Specific cloud requirements
- Design implications
- The Pensando Solution
 - How specific design choices address cloud requirements on DPUs

THANK YOU

baldi at pensando dot io www.pensando.io pensando.io/blog/

