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Abstract—Recent trends in cloud hardware point towards the
rise of specialization and disaggregation. Concurrently, adoption
of multi-chiplet architectures is gaining momentum due to
technology innovations. While we have witnessed cost-efficiency
benefits of chiplet-based hardware architectures in commercial
products, there have been few discussions around the impact of
chiplets on the multi-tenant cloud model. Multi-tenancy promises
transparent resource sharing, but also raises first-class concerns
of security vulnerability and workload isolation. In our vision,
now is the time to advocate that the evolution towards chiplet-
based multi-tenant cloud could be essential and rewarding in the
long run, for cloud-scale concerns such as tail latency, security,
and resource management, besides cost-efficiency.

Index Terms—Cloud Computing, Multi-Tenancy, Chiplets

I. INTRODUCTION

How well cloud system designers can extract efficiency
from cloud hardware largely determines cloud performance
per unit cost. To maximize hardware resource utilization,
the multi-tenant cloud model advocates to transparently share
physical machines among a number of users. Multi-tenancy
has successfully improved cost efficiency with higher resource
utilization. However, such hardware sharing also mandates
futuristic clouds to integrate architectures that elevate isolation
and security as first-class design constraints.

Traditionally, the clouds deploy large-scale workloads using
general-purpose commodity servers. Choosing off-the-shelf
hardware well fits the requirements of workloads such as
web search, which typically exhibit embarrassing parallelism
and feature simple communication patterns [1]. In such cases,
performance scaling has been successful with the number of
servers scaled out, while cost growth has been acceptable due
to Moore’s Law. However, recently two key facts have moti-
vated cloud hardware changes beyond these general-purpose
servers. First, cloud software infrastructure researchers can
no longer expect unlimited commodity hardware performance
scaling in the post Moore’s Law era. Second, a variety
of workloads, e.g., big data and machine learning [2], [3],
[4], [5], demand intensive and complicated computation and
communication.

Simply put, cloud hardware architectures are experiencing
two new trends: specialization [6], [7] and disaggregation
[8], [9]. Specialization optimizes a performance-dominant
software/system component into a specialized silicon mod-
ule. Disaggregation separates compute, memory, and storage

into pools connected by fast networks and operates on big
data. New architectural innovations are required that can (1)
continue integrating more functionalities beyond the reticle
limits of die sizes, (2) accommodate more heterogeneous IPs
under low integration complexity, (3) enable greater memory
integration and more efficient communication in big data
era, (4) combat skyrocketing manufacturing costs in more
economical ways.

Fortunately, the change from monolithic chip architectures
to chiplets has the promise to fundamentally alter future
cloud hardware. Chiplet-based systems feature small dies and
chip resource disaggregation (details in Sec. II-B), and have
successfully pushed the change from silicon-centric thinking
to system-level planning and IC-package co-design. Such a
design paradigm is naturally beneficial for saving manufac-
turing and non-recurring engineering (NRE) cost, processing
data near the memory, customizing communication support,
and facilitating heterogeneous integration. Thus, performance
per dollar can continuously increase.

Interestingly, although chiplets have been extensively dis-
cussed among system architects, hardware designers, and SoC
vendors, there have been few discussions about the impact
of chiplets on the multi-tenant cloud model. Specifically, the
key characteristic of chiplet-based architectures — physical
isolation of resources previously belonging to a monolithic
die — has the potential to offer better workload isolation and
security mechanisms desired by the multi-tenant clouds. This
paper thus tries to establish the synergy between chip disaggre-
gation and multi-tenancy to benefit futuristic hyperscale cloud
services. In our vision, it is worthwhile to explore chiplet-
cloud co-design to investigate the benefits around (but not
limited to) metrics that the cloud cares about, e.g., tail latency,
security mechanisms, DRAM bandwidth scaling and isolation,
as well as flexible communication support.

II. BACKGROUND AND MOTIVATION

A. Trends of Cloud Hardware

Cloud hardware design becomes important when we are
not considering only using commodity servers to serve users.
There are currently several new hardware trends in the cloud.
First, cloud architectures are adopting, and in some cases
pioneering, a variety of devices, such as GPUs, FPGAs,



SmartSSDs, and SmartNICs. Second, introducing new hard-
ware is usually motivated by specializing a performance-
dominant component onto a budget of transistors. For example,
cloud hardware has spurred new capabilities with specialized
chips for machine learning, training, and inference [6], [7]. In
addition, cloud system designers tend to offload key software
components, e.g., in the OS or the network protocol, to
hardware [10], [11], [12]. Third, different types of resources,
including compute, memory, and storage, are disaggregated
into fabric-attached pools that each can be scaled out inde-
pendently per workload needs. Note that chip disaggregation
discussed next would add extra cost-efficiency benefits even
for newly adopted specialized architectures and disaggregated
resources, especially the high-end products that require smaller
technology nodes [13].

B. Chip Disaggregation + Cloud: Why Now?

Disaggregating high-end large-die servers to smaller
chiplets is a boon to an increasing number of cloud hardware
products, including general- and special-purpose processors.
The state-of-the-art 96-core EPYC Genoa [14] contains twelve
compute dies and one I/O die on an interposer. Recently,
based on Foveros [15] and EMIB packaging technologies, Intel
launched Sapphire Rapids Xeon CPUs [16] based on chiplets
and coupled with four high-bandwidth memory (HBM) stacks.
Meanwhile, Marvell is working on chiplet-based 50Tbps
switches that provide more chip edges for SERDES I/Os [17]
to overcome the reticle limit. Accelerators, such as FP-
GAs [18], ASICs [13], and GPUs [19] also have found their
way into commercial chiplet-based architectures.

In a nutshell, the chiplet design philosophy is being increas-
ingly leveraged in more and more commerial products due to
the following two key characteristics:

1) Smaller dies have lower manufacturing cost due to
fewer defects per die and more dies per circular wafer.
Both improve the yield. In [20], die size of 300mm2

yields 75.7% good chips, while 250mm2 yields 94.2%.
2) Chip resource disaggregation reduces both manufac-

turing and design cost, and enables a more flexible SoC
ecosystem. Chiplets are easier to validate due to fewer
functions and smaller scales, and become increasingly
modular for a broad range of SoCs. Thus, chiplet designs
can be reused more easily, which leads to validation,
verification, and IP cost savings, in addition to cheaper
mask cost when using older technology nodes. Also,
vendors do not waste silicon but can sell everything
they fabricate by binning high-end and low-end chiplets,
instead of downgrading an entire large die that poten-
tially has many defects. Ultimately, developments and
upgrades of different chiplets can be in their own cycle.
Such an ecosystem encourages third parties to collab-
oratively customize SoC solutions tailored to different
domains and market segments.
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Fig. 1. CDF of latency comparison between chiplet-based and monolithic
architectures. The policies of workload mapping are (a) one workload per 20-
core chiplet with 14MB LLC, (b) colocating two workload on a monolithic
server (40-core, 28MB).

III. BENEFITS OF CHIPLETS IN CLOUDS

A. Shorter Tails for Latency-Sensitive Workloads

Typically one physical machine in the cloud would host a
number of co-located VMs to increase resource utilization.
However, latency-sensitive applications mandate fine-grained
resource isolation , otherwise interference between VMs would
hurt their tail latencies [21]. In addition, virtualized envi-
ronments spend extra system resources running hypervisors,
which exacerbates the unexpected and hard-to-manage queu-
ing effects. In practice, cloud providers sacrifice resource
efficiency to handle one latency-critical workload per host to
offer satisfactory tail latency guarantees [21].

We advocate that chiplet-based architectures have the po-
tential to naturally provide physical workload isolation among
some shared resources. Fig. 1 demonstrates the potential of
disaggregation as a promising approach to removing interfer-
ence on existing tightly-coupled CPU resources. We co-locate
Silo [22] and Masstree [23], two in-memory latency-sensitive
services, in both a monolithic host and an emulated host
with the same amount of resources split across two identical
chiplets. The figure shows that chiplet isolation can improve
99% latency of Silo/Masstree by 15/6×, mainly resulting
from less last-level cache (LLC) and memory contention and
consequently less queuing effects.

Although isolation can also be achieved by OS- or
hardware-based low-level primitives, chiplet-aware schedul-
ing is a complementary approach worth the attention. First,
chiplet-based application scheduling can relieve the com-
plexity of low-level resource management. For example, our
experiment results of the chiplet isolation setting shown in
Fig. 1 do not rely on any OS- or hardware-based resource
partition. Instead, we simply perform a chiplet-application
mapping and deliver similar to performance when workloads
running standalone. The second lesson we learn is that blindly
scaling one type of resource (LLC in this case) does not
help if not removing interference from other workloads. In
our experiment, the cache miss rates of Silo and Masstree
are high, which indicates that LLC may be a significant
bottleneck in the monolithic colocation setting. However, it
turns out that chiplet-based isolation behaves much better than
the monolithic setting, even though it only has half-sized LLC
per workload.
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B. Security Augmentation

Fine-grained resource sharing can leak sensitive informa-
tion such as confidential data and service placement over
side channels and/or covert channels. Existing techniques
are insufficient. Common architectural solutions attempt to
address some of the security concerns through thread pin-
ning, memory bandwidth isolation, and network and cache
partitioning. But they also inevitably sacrifice utilization and
cost-efficiency [24].

Chiplet-based architectures have the opportunity to improve
security because each chiplet has cores, caches, and memory
interfaces physically isolated from the others. Such a natural
physical isolation precludes many side-channel attacks that
leverage shared microarchitectural states. With techniques
such as restricted coherence domains [25] and simple chiplet-
aware deployment policies, the resources of one tenant can
be better protected from other tenants, without requiring
conventional isolation techniques with degraded performance
and cost-efficiency.

C. Memories Closer to Heterogeneous Compute

Chiplet-based packaging enables compute devices (e.g.,
SmartNICs and GPUs) to sit closer to high-bandwidth stacked
HBMs1 and enables shorter and denser signal routing between
the compute and memories than traditional chip packaging.
First, stacked HBMs are physically ”closer” to devices than
conventional DRAM buses, therefore dramatically alleviating
the bandwidth limitation of the device, and reducing non-
coherent PCIe transactions to the host memory2. Second,
coherence can be more easily achieved among devices and
the host [27], making the data movement entities ”closer” to
each other from application developers’ perspective. Even a
unified memory interconnect among CPUs and devices can
be realized [12]. Furthermore, in multi-tenant settings, this
architecture can reduce memory contention due to more chip
edges and more isolated interfaces.

We created a microbenchmark that reads/writes randomly
generated physical addresses on a remote server’s memory.
The read/write ratio is set to be 50%/50% and the payloads
are set to be 512B. Each memory access request arrives at the
remote server under Poisson process that represents typical
cloud request statistical distribution at end-host servers [28].
We compare our setting that supposes infinite memory band-
width for accessing in-memory data to a baseline remote
server setting that resembles commodity servers. For the
memory system of our baseline setting, we simulate the NIC
to be similar as a Mellanox BlueField SmartNIC [29], which
contains one on-board DDR4 channel and 16GB memory. We
further optimize the baseline by enabling the NIC to be able
to cache recently-accessed payloads in its on-board memory.
This optimization saves the latency of fetching data from the
host memory through a PCIe 3.0 x8 bus. We assume PCIe

1Each HBM2 stack can achieve 256–538 GB/s [26].
2For cache line size packets, DMA performance is bound by the µs-scale

PCIe latency and DMA engine parallelism.
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Fig. 2. Memory bandwidth limitations of (infinite vs. Mellanox BlueField
(BF) configuration [29], T: thread).

can reach its theoretical latency and bandwidth, and faithfully
simulate memory contention at both channel- and bank-level.

Fig. 2 illustrates that memory bandwidth becomes the
bottleneck at high request rates, which limits system
throughput@SLO3 by more than 2× when compared with
our baseline setting. Therefore, it is vital to exploit a more
decoupled architecture like chiplet-based architecture to move
memories closer to the compute for sufficient memory band-
width and minimal memory contention.

D. Flexible and High-Speed Chip-to-Chip Interconnects

Designers can explore additional flexibility to customize
inter-chiplet interconnects. There is still no standardized die-
to-die communication protocol, but lately, open-source coher-
ent interconnect standards that allow off-chip accelerators to
interface the host are rapidly evolving, such as CXL [27] and
OpenCAPI [30]. Additional interconnects such as Gen-Z [31]
can connect servers through Ethernet fabrics. For examples, an
OpenCAPI FPGA stack instance interfacing an IBM POWER9
processor can achieve up to 200Gbit/s bandwidth [9]. We show
a few inter-chiplet interconnects with different performance
and scalability in Table I.

The on-substrate interconnect provides additional routing
capability [20]. It can efficiently accommodate the growing
communication demands due to chip disaggregation, isolated
away from the intra-chiplet network-on-chip (NoC). Moreover,
as communication patterns become irregular and intensive,
chiplet-based architectures can localize short-distance data
movement within each chiplet, and use available inter-chiplet
interfaces to customize interconnects for different workloads.
For instance, we customized a high-bandwidth inter-chiplet
interconnect, ButterDonut [32], that outperforms coherent
Mesh on a microbenchmark. The number of chiplets are
assumed to be 16, where each chiplet contains 16 CPU cores,
and the microbenchmark settings are the same as that in
Sec. III-C. The microbenchmark is ported into BookSim [33]
to evaluate the corresponding interconnect performance in
different interconnect designs. Compared with a 4×4 coherent
Mesh, ButterDonut improves request throughput by 1.14×.
Moreover, we test that the interconnect throughput is bottle-
necked by the ingress/egress traffic between the network inter-
face I/O chiplet and compute chiplets. Therefore, we isolate
the traffic from the microbenchmark-induced memory traffic

3Service level objective (SLO) is set to be 30µs for 99th percentile
latency [28].
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TABLE I
INTER-CHIPLET INTERCONNECTS COMPARISON. ASSUME PCIE 4.0X16, NVLINK 50GB/S.

Interconnects Protocol Link/PHY B/W Multi-hop Latency Deployment Scale
OpenCAPI P2P PCIe/ NVLink 32-50GB/s Low/Medium Package-levelCXL PCIe/CXL 32GB/s

ButterDonut Packet-switched Interposer 12x16GB/s (bisection) Low
Gen-Z Ethernet Fabric 100Gbps+ Medium/High Rack-level

by providing separate interconnect links. Our customization
achieves 1.44× throughput improvement over the Mesh due
to less interconnect contention. In our vision, there would
be a diversity of interconnect design opportunities to satisfy
domain-specific communication patterns.

IV. CONCLUSIONS

Multi-tenant clouds and chip disaggregation are recent
movements that have progressed largely independently, even
though they share a common goal: to extract the maximum
transistor efficiency with the minimum cost. This paper sum-
marizes a list of reasons to co-design chiplet-based cloud
hardware with multi-tenancy. While this may take time to
emerge, there are immediate opportunities for ideas from chip
disaggregation to inform the progression of more cost-efficient
and easy-to-manage multi-tenant clouds.

There are three takeaways.
• First, this idea showcases the new design philosophy

for future cloud systems: hardware architects cannot be
unaware of hyperscale software requirements, and system
researchers can no longer follow the traditional approach
of building each layer of the system stack separately. In-
stead, we must rethink the synergy between the software
and hardware worlds from the ground up.

• Second, the similar purpose of multi-tenancy and chip
disaggregation motivates co-design efforts, because multi-
tenant clouds deploy layers of software that logically par-
tition warehouse-scale computers into isolated resource
groups for elastic usage among tenants, whereas chip
disaggregation also ”coincidentally” physically partitions
tightly-coupled resources on a large server die into mul-
tiple lower-cost chiplets, but exposing this architecture to
system software still as a virtually monolithic machine.

• Third, chiplet-aware cloud system design has the potential
to benefit tail latency, security, memory and interconnect
designs, and also chiplets’ own original benefits — im-
proved performance per dollar.
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